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1. Introduction

Since its introduction [18] the singular value decomposition (SVD) has been exten-
sively used for a wide range of signal processing problems [6,11,21], from optimal precoder 
and equaliser design for multiple-input multiple-output (MIMO) channel matrices of 
complex gain factors [22] to broadband problems whose channel matrix is determined 
by impulse responses [8]. In the last case, though, the SVD ignores time or frequency 
correlations in the signals leading to loss of spectral coherence [26].

The focus has therefore shifted to the computation of the SVD for matrices with 
entries in functional rings and fields, in the hope to retain more information and regu-
larity from the signals without having to process each time step or frequency separately. 
In this context, several algorithms for a polynomial SVD (PSVD) of possibly rectan-
gular matrices have been recently developed, performing an approximate factorisation 
into Laurent-polynomial matrices. The use of PSVD algorithms extends from generic 
problems [9,20], finding application in various practical scenarios such as MIMO com-
munications [1,2,7,13,19,23], the equalisation of filter bank-based multi-carrier systems 
[10,15], or broadband beamforming [28].

Despite the fact that the algorithms in [5,9,14,16,17] are proven to converge to a diag-
onal matrix, it has not been until recently [27] that questions about the properties of such 
outputs have been raised to understand what these algorithms are actually converging to. 
In the past, studies have shown the limits about the existence and uniqueness of an SVD 
decomposition of analytic matrices with respect to a real variable [12], also in the case 
when the entries present a common period [4]. The purpose of this paper is to continue 
the investigation about the existence of the analytic SVD of a (possibly rectangular) 
matrix, and study how changing the constraints on the wanted factorization may lead 
to more regular decompositions. The main contribution, in a signal processing context, 
is that any system can be brought by paraunitary operations into a block-diagonal form 
containing pseudo-circulant matrices. This is quite profound: it means that any arbitrary 
arrangement (concatenations, nesting, etc.) of multiplexed systems can be converted and 
decoupled into a parallel form.

Consider a (possibly rectangular) matrix A(z) that is holomorphic on the unit circum-
ference S1. It can be equivalently represented by the Laurent time series with coefficients 
A[n]◦—–•A(z) or by the analytic and 2π periodic matrix on the real line A(Ω) := A(ejΩ). 
When L is a positive integer, then with B(z1/L) we denote a matrix whose entries can 
be written as Laurent series in the variable z1/L, called Puiseux series with index L, 
that converges on an annulus around S1, and can be equivalently represented by the 
analytic and 2πL periodic matrix on the real line B(Ω) := B(ejΩ/L). See [3, Section 2.1]
for a more detailed discussion on the topic. From now on, any matrix, vector or scalar 
function depending on some complex variable z or z1/L is intended to be analytic with 
respect to the relative variable at least on S1.
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Fig. 1. Singular values of A(z) in Example 3 drawn with respect to the angle Ω on the domains [0, 2π] and 
[0, 8π].

In [27] and [3] it has been proven that any rectangular matrix A(z) admits an SVD

A(z) = U(z1/L)Σ(z1/L)VP (z1/L) (1)

for some positive integer L, where Σ(z1/L) is a diagonal matrix and U(z1/L), V(z1/L)
are para-unitary matrices, i.e. U(z)UP (z) = I with the para-Hermitian operator {·}P
performing a time reversal and complex conjugation UP (z) := [U(1/z)]H . Moreover, the 
diagonal entries of Σ(z1/L) are real for any z ∈ S1, and thus their absolute values are 
exactly the singular values of A(z). The difference with a traditional SVD is that we 
allow for the singular values to be also negative, which is a necessary requisite in order 
to retain the analyticity of the factorization.

The parameter L comes from the presence of multiplexed singular values and (an 
odd number of) zeros of the singular values σi(z1/L) in Σ(z1/L). A visual example of 
multiplexed singular values is given in Fig. 1 where we represent the analytic singular 
values of the following matrix A(z)

⎛
⎜⎜⎝

2
√

2
√

2 0√
2z−1 3 −1

√
2(1 + z)√

2z−1 −1 3 −
√

2(1 + z)
0

√
2(1 + z−1) −

√
2(1 + z−1) 4

⎞
⎟⎟⎠

given by the expressions

σ1(Ω) = 4 cos
(

Ω
)

= 2(z 1
4 + z−

1
4 ), σ2(Ω) = 4 sin

(
Ω
)

= 2i(z− 1
4 − z

1
4 ),
4 4
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σ3(Ω) = 4 + 4 cos
(

Ω
2

)
= 2(z 1

4 + z−
1
4 )2, σ4(Ω) = 4 − 4 cos

(
Ω
2

)
= −2(z− 1

4 − z
1
4 )2

where we have substituted z = eiΩ. In this case none of the singular values are analytic in 
z, but they are all analytic in z1/4. σ3(Ω) and σ4(Ω) have both period 4π and σ3(Ω +2π) =
σ4(Ω), σ4(Ω + 2π) = σ3(Ω), meaning that σ3 restricted to [2π, 4π] will coincide with σ4
on [0, 2π] and vice versa. On the other hand, σ1(Ω) and σ2(Ω) have both period 8π and 
σ1(Ω + 2π) = −σ2(Ω), σ2(Ω + 2π) = σ1(Ω), so their 2π-shifted plots coincide up to a 
sign change. In this case, we can split the singular values into the orbit {σ3, σ4}, that we 
call 2-multiplexed, and the orbit {σ1, σ2} that we call signed 2-multiplexed.

In general, the singular values of a rectangular matrix A(z) can be partitioned into 
orbits such that k-multiplexed singular values are in orbits of cardinality k, and

σi+1(Ω) ≡ σi(Ω + 2π), ∀i = 1, . . . , k − 1,

|σ1(Ω)| ≡ |σk(Ω + 2π)| ≡ |σ1(Ω + 2πk)|, (2)

where σi(Ω) := σi(ejΩ/L) and |σi(Ω)| �≡ |σj(Ω)| for every i �= j. In case σ1(Ω) ≡
σk(Ω + 2π), we say that the singular values σi in this orbit are k-multiplexed and they 
are analytic in z1/k. If instead σ1(Ω) ≡ −σk(Ω + 2π) we say that the singular values are 
signed k-multiplexed and in this case they are analytic in z1/2k.

As a way to get rid of the multiplexed index L and return to classical holomorphic 
functions, it has been shown in [24,25] and [3] that any square para-Hermitian matrix 
A(z) = AP (z) admits a decomposition

A(z) = U(z)C(z)UP (z),

where U(z) is para-unitary and C(z) is block diagonal and each block is pseudo-circulant, 
i.e. for each block of size N there exist some functions φ0(z), . . . , φN−1(z) such that the 
block has the form

⎡
⎢⎢⎢⎣

φ0(z) z−1φN−1(z) . . . z−1φ1(z)

φ1(z) φ0(z)
. . .

...
...

. . . . . . z−1φN−1(z)
φN−1(z) . . . φ1(z) φ0(z)

⎤
⎥⎥⎥⎦

and each block coincides with a different N -multiplexed orbit of eigenvalues of A(z). In 
fact it can be proved that all the pseudo-circulant matrices of size N are diagonalizable 
by a same para-unitary matrix Wn(z1/N ) and that their eigenvalues {λi(z1/N )}i=1,...,N
are always a N -multiplexed set. Viceversa, given any a N -multiplexed set as elements 
of a diagonal matrix D(z1/N ), then the matrix Wn(z1/N )D(z1/N )Wn(z1/N )P is always 
pseudo-circulant and in particular it will be analytic in z.

With respect to the above pseudo-circulant eigendecomposition for para-Hermitian 
matrices, whose blocks are determined by the multiplexing of the eigenvalues, when 
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dealing with singular values we have also to be wary of possibly signed multiplexed 
orbits, that are less regular than the not signed ones.

Here we show the existence of different “singular values” decompositions for any (pos-
sibly rectangular) matrix A(z), where we relax some constraints on the structure of the 
SVD in order to gain more regularity.

First of all, we refine the decomposition in [3,27] and find an analytic SVD

A(ejΩ) = U(Ω)Σ(Ω)V(Ω)H ,

where the diagonal matrix Σ(Ω) may have negative entries and contains the singular 
values of A(Ω) up to the sign, and for each non identically zero singular value σ(Ω) that 
is (signed) k-multiplexed, the associated left and right singular vectors present the same 
(signed) multiplexed behaviour.

Then we allow for complex singular values in order to get rid of the signed multiplexed 
orbits, i.e. we find an analytic SVD

A(ejΩ) = U(Ω)S(Ω)V(Ω)H ,

where S(Ω) is a diagonal and complex matrix, with diagonal entries si(Ω) whose abso-
lute values correspond with the singular values of A(ejΩ). The functions si(Ω) are still 
multiplexed, but they are no more signed multiplexed.

Leveraging on the latest decomposition, we then prove that, even in the rectangular 
case, any A(z) admits a pseudo-circulant decomposition of the form

A(z) = U(z)C(z)VP (z),

where C(z) is block diagonal and each block is pseudo-circulant.

2. Periodicity of singular vectors

Let A be a (possibly rectangular) matrix with distinct non-zero singular values 
σ1, . . . , σp, where each singular value has multiplicity qi. In the SVD A = UΣVH , 
the matrix Σ is diagonal, real, nonnegative and contains the singular values σi with the 
respective multiplicities on the diagonal, plus possibly some zeros. The factorization can 
equivalently be written in dyadic notation as

A =
p∑

i=1
σiUiVH

i , (3)

where Ui are the qi columns of U containing the left singular vectors relative to σi and 
Vi are the qi columns of V containing the right singular vectors relative to σi. Even if 
the SVD is in general not unique, a known result is that each factor Ai := UiVH

i in 
(3) is uniquely determined by σi. Moreover, suppose the singular values in Σ are sorted 
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so that repeated singular values are consecutive on its diagonal (not necessarily in some 
order). If now we take the two EVDs AAH = Q1D1QH

1 and AHA = Q2D2QH
2 where 

D1, D2 are real, diagonal, nonnegative and present the same nonzero eigenvalues λi = σ2
i

on the same positions as the relative singular values appear in Σ, then

A = Q1ΣΨQH
2 , (4)

where Ψ is a square, block diagonal and unitary matrix, each block relative to a repeated 
singular value, with size equal to its multiplicity.

When dealing with analytic matrices A(t) depending on a real variable t, we already 
know that there exists a ‘SVD’ decomposition:

Theorem 1 (Analytic SVD on a real interval, [12]). For an M ×N matrix A(t) that is 
analytic on some interval of R, a decomposition

A(t) = U(t)Σ(t)V(t)H (5)

exists with analytic unitary U(t) and V(t), and analytic, diagonal, real-valued Σ(t).

The decomposition (5) is not exactly a SVD since the diagonal elements of Σ(t)
are permitted to be negative real numbers, but their absolute values coincide with the 
singular values of A(t). The negativity of the singular values, though, is an essential 
hypothesis to guarantee the analiticity of the decomposition, so from now on we call (5)
the analytic SVD of A(t). The necessity of this hypothesis is shown by the following 
example.

Example 1. Consider the 1 × 1 matrix A(t) = 2 cos(t/2)ejt/2. A unitary 1 × 1 matrix is 
just a unit norm complex number so in (5) we can call γ(t) := U(t)V(t)H , |γ(t)| = 1, 
σ(t) := Σ(t) ∈ R and find that 2 cos(t)ejt/2 = γ(t)σ(t) from which |2 cos(t/2)| = |σ(t)|
for every t. Since γ(t) and σ(t) must be analytic, the only two possible factorizations 
are σ(t) ≡ 2 cos(t/2), γ(t) ≡ ejt/2 or σ(t) ≡ −2 cos(t/2), γ(t) ≡ −ejt/2 and in both cases 
σ(t) is negative on some real multi-interval. �

Consider now the matrix A(z) and its 2π periodic counterpart A(Ω) = A(ejΩ). From 
(5) there exists an analytic SVD A(Ω) = U(Ω)Σ(Ω)V(Ω)H , but we do not have any 
prior information about the periodicity of the factors (or if they are periodic at all). 
From [27] it has been shown that such a decomposition exists where all the factors are 
2πL periodic for some positive integer L, so that one can reconstruct the decomposition 
A(z) = U(z1/L)Σ(z1/L)VP (z1/L) in Puiseux series of index L. In the following we study 
the periodicity of each singular value and vector, and we show that when the period of 
σi(Ω) is less than 2πL then its left and right singular vectors can present the same period 
of σi(Ω) or even half of it.
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2.1. Multiplexing and sign changes

The necessity of using the Puiseux series to find a SVD as in (1) is due to the possibility 
of the singular values being multiplexed or having a sign change. Recall that the sign 
problem is already present in the analytic SVD (5) and the matrix in Example 1 already 
exhibits this issue:

Example 2. Take A(z) = 1 + z, whose associated matrix A(Ω) = 1 + ejΩ =
2 cos(Ω/2)ejΩ/2 is the same as Example 1. Its only possible singular value, up to the 
sign, is thus σ(z1/2) = 2 cos(Ω/2) = ejΩ/2 + e−jΩ/2. �

Given a matrix A(z) and the analytic SVD A(Ω) = U(Ω)Σ(Ω)V(Ω)H , we can always 
suppose that all the analytic singular values σi(Ω) are nonnegative in a small enough right 
interval of zero, i.e. [0, ε], up to a constant ±1 diagonal matrix that can be multiplied 
to U(Ω) and Σ(Ω). In particular, this choice assures us that if σi(Ω) �≡ σj(Ω), then 
|σi(Ω)| �≡ |σj(Ω)|, because otherwise they would coincide on the interval [0, ε]. Call then 
σ1(Ω), . . . , σp(Ω) the distinct non identically zero singular values of A(Ω) and, if it exists, 
its zero singular value σ0(Ω) ≡ 0.

Let now Ω0 be a point such that all distinct singular values σi(Ω) have different 
absolute value when evaluated on Ω0 and σi(Ω0) �= 0 for every i = 1, . . . , p. Notice that 
due to the analiticity of the singular values and of the zero function, Ω0 can be almost 
every real number, since the set of values Ω for which two distinct real analytic functions 
take the same absolute value is discrete.

Notice that the absolute values of the diagonal entries of Σ(Ω) are always the classical 
singular values of A(Ω), and since it is 2π periodic, then A(Ω0) = A(Ω0 +2π) so Σ(Ω0)
and Σ(Ω0 + 2π) must contain the same diagonal entries up to signs and permutations. 
In particular, this shows that

• the number of zero diagonal entries of Σ(Ω0) and Σ(Ω0 +2π) is the same and equals 
the multiplicity of the identically zero singular value of A(Ω), whereas σi(Ω0) �= 0 �=
σi(Ω0 + 2π) for every i = 1, . . . , p,

• if |σi(Ω0 + 2π)| �= |σi(Ω0)| then there exists j �= i such that |σj(Ω0)| = |σi(Ω0 + 2π)|
and they have the same multiplicity qi = qj ,

• there exists a unique permutation τ of the indexes of the non identically zero singular 
values such that |στ(i)(Ω0)| = |σi(Ω0 + 2π)| for all i = 1, . . . , p,

• since Ω0 can be almost every real number, and all |σi(Ω)| are at least continuous, 
then |στ(i)(Ω)| ≡ |σi(Ω + 2π)|.

Up to a renaming of the indexes, we can always suppose τ = (1, . . . , k1)(k1 + 1, . . . , k1 +
k2) . . . (p −kR+1 . . . , p), meaning that the permutation τ partitions the p distinct singular 
values into R sets, or orbits, indexed by ν = 1, . . . , R, each of cardinality kν , and cyclically 
shifts them. Moreover, up to changing the global sign of some of the singular values, we 
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can drop almost all the absolute values in the above relation, except the one that links 
the last element of each cycle to the first. For example, looking at the first set, we find 
that

σi+1(Ω) ≡ σi(Ω + 2π), ∀i = 1, . . . , k1 − 1,

|σ1(Ω)| ≡ |σk1(Ω + 2π)| ≡ |σ1(Ω + 2πk1)|, (6)

and since σ1(Ω) is analytic and non identically zero, then there exists κ1 ∈ {1, 2} such 
that

σ1(Ω) ≡ (−1)κ1−1σ1(Ω + 2πk1) ≡ σ1(Ω + 2πk1κ1),

and the same applies to all other singular values in the same set, i.e.

σi(Ω) ≡ (−1)κ1−1σi(Ω + 2πk1) ≡ σi(Ω + 2πk1κ1) (7)

for every i = 1, . . . , k1. As a consequence all singular values of each ν-orbit of τ have 
period 2πkνκν where kν is the multiplexing index and at the same time the size of the 
ν-set, whereas κν ∈ {1, 2} and it encodes the possible sign change. When κν = 1, we 
say that the singular values of the ν-set are kν-multiplexed, and if additionally κν = 2, 
we say that they are signed kν-multiplexed. Notice that any (signed) kν-multiplexed 
singular value is 2πkνκν periodic and thus admits a Puiseux series in z1/(kνκν). For a 
more detailed exploration of multiplexed systems, see [27].

Example 3. Consider the matrix A(z)

⎛
⎜⎜⎝

2
√

2
√

2 0√
2z−1 3 −1

√
2(1 + z)√

2z−1 −1 3 −
√

2(1 + z)
0

√
2(1 + z−1) −

√
2(1 + z−1) 4

⎞
⎟⎟⎠

whose real-variable equivalent A(Ω) has analytic singular values σ1(Ω) = 4 cos(Ω/4), 
σ2(Ω) = 4 sin(Ω/4), σ3(Ω) = 4 + 4 cos(Ω/2) and σ4(Ω) = 4 − 4 cos(Ω/2), represented in 
Fig. 1. Notice that

|σ1(Ω + 2π)| = 4| cos(Ω/4 + π/2)| = |σ2(Ω)|,
|σ2(Ω + 2π)| = 4| sin(Ω/4 + π/2)| = |σ1(Ω)|,
|σ3(Ω + 2π)| = |4 + 4 cos(Ω/2 + π)| = |σ4(Ω)|,
|σ4(Ω + 2π)| = |4 − 4 cos(Ω/2 + π)| = |σ3(Ω)|,

so that the resulting permutation is τ = (1, 2)(3, 4) and k1 = k2 = 2. Regarding the sign 
change, it is enough to test it on σ1 and σ3:
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σ1(Ω + 4π) = 4 cos(Ω/4 + π) = −σ1(Ω),

σ3(Ω + 4π) = 4 + 4 cos(Ω/2 + 2π) = σ3(Ω),

showing that κ1 = 2, κ2 = 1. In fact σ1 and σ2 have period 2πk1κ1 = 8π and are signed 
2-multiplexed, whereas σ3 and σ4 have period 2πk2κ2 = 4π and are 2-multiplexed. �

2.2. Periodicity of the singular vectors

Let us now focus on the periodicity of the singular vectors. In the previous section 
we showed that each singular value has periodicity 2πkνκν , where kν is the size of the 
multiplexed set and κν takes care of the possible sign change.

From [27] we know that any A(z) admits a SVD in Puiseux series with index L =
lcm{k1κ1, . . . , kRκR}, where R is the number of the orbits of the associated permutation. 
The SVD can be reformulated with the associated real-variable matrices as A(Ω) =
U(Ω)Σ(Ω)V(Ω)H where all the factors have period 2πL, but in general the elements of 
Σ(Ω) have smaller periods 2πkνκν .

Here we prove that one can always take U(Ω) such that the left singular vectors 
associated to (signed) kν-multiplexed singular values are in turn kν-multiplexed, i.e. if 
(r, r + 1, . . . , r + kν − 1) is the orbit of the singular value σi(Ω) and Ui(Ω) are the left 
singular vectors in U(Ω) associated to σi(Ω), then

• Us(Ω + 2π) = Us+1(Ω) for s = r, . . . , r + kν − 1,
• Ur+kν−1(Ω + 2π) = Ur(Ω),

and in particular Ui(Ω) is 2πkν periodic.
At the same time, one can always take V(Ω) such that right singular vectors associated 

to (signed) kν-multiplexed singular values are in turn (signed) kν-multiplexed, i.e. if 
Vi(Ω) are the right singular vectors in V(Ω) associated to σi(Ω), then

• Vs(Ω + 2π) = Vs+1(Ω) for s = r, . . . , r + kν − 1,
• Vr+kν−1(Ω + 2π) ≡ (−1)κ1−1Vr(Ω),

and in particular Vi(Ω) is 2πkiκi periodic.
The following proof coincides in part with Theorem 2 in [27] and Theorem 3.14 in [3]. 

We make use of Proposition 3.9 of [3], where it is proved that for any para-Hermitian 
matrix A(z) there exists an EVD A(Ω) = W(Ω)D(Ω)W(Ω)H where the eigenvectors 
in W(Ω) have the same period as the respective eigenvalues on the diagonal of D(Ω), 
and from the proof of Theorem 3.14 in the same document, we can also suppose that 
the eigenvectors Wi(Ω) relative to an eigenvalue λi(Ω) are kν-multiplexed when the 
eigenvalue itself is kν-multiplexed.
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Theorem 2. For an analytic matrix A(z), there exists an analytic SVD on the unit cir-
cumference

A(ejΩ) = U(Ω)Σ(Ω)V(Ω)H ,

where the diagonal matrix Σ(Ω) may have negative entries and contains the singular 
values of A(Ω) up to the sign. Moreover, each non identically zero singular value σi(Ω)
in Σ(Ω) is (signed) kν-multiplexed and

• the associated left singular vectors Ui(Ω) are kν-multiplexed, and in particular 2πkν
periodic,

• the associated right singular vectors Vi(Ω) are (signed) kν-multiplexed, and in par-
ticular 2πkνκν periodic.

Proof. From Theorem 1, the SVD A(Ω) = Ũ(Ω)Σ(Ω)Ṽ(Ω)H presents non identically 
zero singular values that are 2πkνκν periodic depending on the orbits of the permutation. 
Without loss of generality, suppose the permutation is τ = (1, . . . , k1)(k1+1, . . . ) . . . and 
notice that from (7),

σi(Ω)2 ≡ σi(Ω + 2πkν)2 ∀i,

i.e., the square of all singular values are 2πkν periodic. Both R1(z) := A(z)AP (z) and 
R2(z) := AP (z)A(z) are positive semi-definite para-Hermitian matrices and have the 
same non identically zero analytic eigenvalues λi(Ω) that are the square of the non 
identically zero singular values in Σ(Ω). We can always suppose, up to a sign change, 
that Σ(Ω) ≥ 0 on a small interval Ω ∈ [0, ε], so that if σi(Ω) = −σj(Ω) for all Ω, 
then necessarily σi ≡ σj ≡ 0. As a consequence, there’s a unique way to associate 
the non identically zero singular values σi(Ω) to the non identically zero eigenvalues 
λi(Ω) = σi(Ω)2 and in particular they have the same multiplicity, and if σi(Ω) is (signed) 
kν-multiplexed, then the eigenvalue λi(Ω) is kν-multiplexed with the same orbit. One 
can thus write down the EVD of the para-Hermitian matrices as

R1(Ω) = Q1(Ω)D1(Ω)Q1(Ω)H ,

R2(Ω) = Q2(Ω)D2(Ω)Q2(Ω)H ,

where the eigenvectors in Q1(Ω) and Q2(Ω) relative to the eigenvalue λi(Ω) �≡ 0
have the same period 2πkν and are kν-multiplexed when λi(Ω) and σi(Ω) are kν-
multiplexed, and D1(Ω), D2(Ω) present in order the same non identically zero eigen-
values on their diagonals. From (4), we can then formulate a SVD of A(Ω) as A(Ω) =
Q1(Ω)Σ(Ω)Ψ(Ω)QH

2 (Ω) only for the Ω where Σ(Ω) ≥ 0, but if some singular value is 
negative, we can always multiply a diagonal ±1 matrix to Ψ(Ω) that keeps it unitary 
and with the same blocks on the diagonal. Moreover, we can always suppose that the 
elements on the diagonal of Ψ(Ω) relative to identically zero singular values are just 1.
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Let Q(i)
1 (Ω) and [Q2(Ω)Ψ(Ω)H ](i) = Q(i)

2 (Ω)Ψi(Ω)H be the left and right singular 
vectors relative to the non identically zero singular value σi(Ω). Recall that up to a 
negligible set, for all Ω ∈ R the values |σi(Ω)| are distinct, so from now on we always 
suppose that it holds. As a consequence, by the uniqueness of (3) and the analytic SVD 
A(Ω) = Ũ(Ω)Σ(Ω)Ṽ(Ω)H we have

Q(i)
1 (Ω)Ψi(Ω)Q(i)

2 (Ω)H = Ũi(Ω)Ṽi(Ω)H

=⇒ Ψi(Ω) = Q(i)
1 (Ω)HŨi(Ω)Ṽi(Ω)HQ(i)

2 (Ω),

proving that each block of Ψ(Ω), and thus the whole Ψ(Ω), is also analytic.
We can thus consider the two unitary analytic matrices U(Ω) := Q1(Ω) and V(Ω) :=

Q2(Ω)Ψ(Ω)H and form the analytic SVD A(Ω) = U(Ω)Σ(Ω)V(Ω)H where U(Ω) already 
satisfies the thesis. Recall that the permutation is τ = (1, . . . , k1)(k1 + 1, . . . ) . . . , so we 
can focus on the first set of multiplexed singular values, for which we can always suppose

σi+1(Ω) ≡ σi(Ω + 2π), ∀i = 1, . . . , k1 − 1,

σi(Ω) ≡ (−1)κ1−1σi(Ω + 2πk1), ∀i = 1, . . . , k1.

As a consequence, from the uniqueness of the decomposition (3), the 2π periodicity of 
A(Ω), and the fact that Ui(Ω) is kν-multiplexed we find that

Ui+1(Ω)Vi(Ω + 2π)H = Ui(Ω + 2π)Vi(Ω + 2π)H

= Ui+1(Ω)Vi+1(Ω)H

=⇒ Vi(Ω + 2π) = Vi+1(Ω)

for any i = 1, . . . , k1 − 1 and

Ui(Ω)Vi(Ω + 2πk1)H = Ui(Ω + 2πk1)Vi(Ω + 2πk1)H

= (−1)κ1−1Ui(Ω)Vi(Ω)H

=⇒ Vi(Ω + 2πk1) = (−1)κ1−1Vi(Ω)

for any i = 1, . . . , k1. Repeating the same steps for all orbits, the thesis is proved.

Example 4. Let A(z) be the same matrix as in Example 3 and consider the unitary 
matrices

U(Ω) := 1
2

⎛
⎜⎜⎝

√
2

√
2 0 0

e−jΩ/2 −e−jΩ/2 1 1
e−jΩ/2 −e−jΩ/2 −1 −1√ −jΩ/2 √ −jΩ/2

⎞
⎟⎟⎠ ,
0 0 2e − 2e
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V(Ω) := 1
2

⎛
⎜⎜⎝
√

2ejΩ/4 j
√

2ejΩ/4 0 0
e−jΩ/4 −je−jΩ/4 1 1
e−jΩ/4 −je−jΩ/4 −1 −1

0 0
√

2e−jΩ/2 −
√

2e−jΩ/2

⎞
⎟⎟⎠ .

Then A(Ω) = U(Ω)Σ(Ω)V(Ω)H and the singular values on the diagonal of Σ(Ω) are in 
order σ1(Ω) = 4 cos(Ω/4), σ2(Ω) = −4 sin(Ω/4), σ3(Ω) = 4 + 4 cos(Ω/2) and σ4(Ω) =
4 −4 cos(Ω/2). In this case σ1(Ω) and σ2(Ω) are signed 2-multiplexed, and in fact U1(Ω), 
U2(Ω) are 2-multiplexed since

U1(Ω + 4π) = U2(Ω + 2π) = U1(Ω)

and V1(Ω), V2(Ω) are signed 2-multiplexed since

V1(Ω + 4π) = V2(Ω + 2π) = −V1(Ω).

Similarly, σ3(Ω) and σ4(Ω) are 2-multiplexed, and in fact one can check that U3(Ω), 
U4(Ω), V3(Ω), V4(Ω) are all 2-multiplexed. �

3. Diagonal complex decomposition

Here we discuss how to replace the signed multiplexed singular values and vectors 
with non-signed ones, in fact raising the regularity of the involved quantities by reducing 
their periods by a factor 2. In exchange, we have to admit that the singular values may 
be complex-valued. In fact, if σ1(Ω), . . . , σk(Ω) and the relative right singular vectors 
in V(Ω) in the decomposition of Theorem 2 are signed k-multiplexed, then si(Ω) :=
σi(Ω)ejΩ/(2k)ωi−1

2k and Ṽi(Ω) := Vi(Ω)ejΩ/(2k)ωi−1
2k are just k-multiplexed, where ωp :=

e2πj/p and |si(Ω)| = |σi(Ω)| are the singular values of A(Ω). As a consequence, it is 
sufficient to multiply Σ(Ω) and V(Ω) by an opportune unitary matrix to get rid of the 
sign change in the multiplexed singular values and vectors.

Theorem 3. For an analytic matrix A(z), there exists an analytic complex diagonalization 
on the unit circumference

A(ejΩ) = U(Ω)S(Ω)V(Ω)H ,

where the diagonal matrix S(Ω) may have complex entries whose absolute values are the 
singular values of A(Ω) and U(Ω), V(Ω) are unitary. Moreover, if the non identically 
zero singular value σi(Ω) is (signed) kν-multiplexed, then the relative non identically zero 
entry si(Ω), the associated left singular vectors Ui(Ω) and the associated right singular 
vectors Vi(Ω) are all kν-multiplexed, and in particular 2πkν periodic.

Proof. Thanks to Theorem 2, there always exists an analytic decomposition

A(Ω) = U(Ω)Σ(Ω)Ṽ(Ω)H ,
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where for each (signed) kν-multiplexed non identically zero singular value σi(Ω) in Σ(Ω), 
the associated left singular vectors Ui(Ω) are kν-multiplexed, and the associated right 
singular vectors Ṽi(Ω) are (signed) kν-multiplexed.

Let us now focus on the first set of singular values σi(Ω) with 1 ≤ i ≤ k1 that 
are (signed) k1-multiplexed and define si(Ω) := σi(Ω)ejΩ/(k1κ1)ωi−1

k1κ1
. All si(Ω) are k1-

multiplexed since

si(Ω + 2π) =σi(Ω + 2π)ejΩ/(k1κ1)ωk1κ1ω
i−1
k1κ1

=σi+1(Ω)ejΩ/(k1κ1)ωi
k1κ1

= si+1(Ω)

for i = 1, . . . , k1 − 1 and

si(Ω + 2πk1) =σi(Ω + 2πk1)ejΩ/(k1κ1)ej2π/κ1ωi−1
k1κ1

=σi(Ω)ejΩ/(k1κ1)ωi−1
k1κ1

= si(Ω)

for i = 1, . . . , k1. Using the same reasoning, one can prove also that Vi(Ω) :=
Ṽi(Ω)ejΩ/(k1κ1)ωi−1

k1κ1
are k1-multiplexed. Repeating the same reasoning for all the (copies 

of all) the orbits of τ , we find a decomposition of the form

A(Ω) =
∑
i

si(Ω)Ui(Ω)Vi(Ω)H = U(Ω)S(Ω)V(Ω)H

with diagonal complex matrix S(Ω).

Example 5. Let A(z) be

A(z) := 1
2

(
−
√

2j(z−2 + z) −j(z + z−1) −j(z + z−1)√
2(z − z−2) z − z−1 z − z−1

)
,

that has left and right singular vectors

U(Ω) := −1
2

(
j(e−j2Ω + ejΩ/2) j(e−j2Ω − ejΩ/2)
e−j2Ω − ejΩ/2 e−j2Ω + ejΩ/2

)
,

V(Ω) := 1
2

⎛
⎝
√

2e−jΩ/4 −
√

2je−jΩ/4 0
e−j3Ω/4 je−j3Ω/4 √

2
e−j3Ω/4 je−j3Ω/4 −

√
2

⎞
⎠

and SVD A(Ω) = U(Ω)Σ(Ω)V(Ω)H with σ1(Ω) = 2 cos(Ω/4), σ2(Ω) = −2 sin(Ω/4). In 
this case σ1(Ω) and σ2(Ω) are signed 2-multiplexed, so k1 = κ1 = 2. Moreover, U1(Ω), 
U2(Ω) are 2-multiplexed and V1(Ω), V2(Ω) are signed 2-multiplexed. We eliminate the 
sign ambiguity in transforming the singular values into si(Ω) by multiplication with 
ejΩ/(k1κ1)ωi−1

k1κ1
= ejΩ/4ji−1, thus

s1(Ω) = σ1(Ω)ejΩ/4 = 2 cos(Ω/4)ejΩ/4, s2(Ω) = σ2(Ω)ejΩ/4j = −2 sin(Ω/4)ejΩ/4j.
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Notice that they are 2-multiplexed without the sign ambiguity since

s1(Ω + 2π) = 2 cos(Ω/4 + π/2)ejΩ/4+jπ/2 = −2 sin(Ω/4)ejΩ/4j = s2(Ω),

s2(Ω + 2π) = −2 sin(Ω/4 + π/2)ejΩ/4+jπ/2j = 2 cos(Ω/4)ejΩ/4 = s1(Ω).

If S(Ω) is a diagonal matrix with si(Ω) as diagonal elements, then

A(Ω) = U(Ω)S(Ω)

⎛
⎝ejΩ/4

ejΩ/4j
1

⎞
⎠

H

V(Ω)H

where the first two columns of the unitary matrix

V(Ω)

⎛
⎝ejΩ/4

ejΩ/4j
1

⎞
⎠ = 1

2

⎛
⎝

√
2

√
2 0

e−jΩ/2 −e−jΩ/2 √
2

e−jΩ/2 −e−jΩ/2 −
√

2

⎞
⎠

are now 2-multiplexed with no sign ambiguity. �

4. Diagonal pseudo-circulant decomposition

The multiplexed singular values are tightly linked to the eigenvalues of certain struc-
tured matrices, called pseudo-circulant, that are 2π periodic N × N normal matrices 
C(Ω) for which there exist analytic 2π periodic functions φ0(θ), . . . , φN−1(θ) such that 
C(Ω) is in the form

⎡
⎢⎢⎢⎣

φ0(Ω) e−jΩφN−1(Ω) . . . e−jΩφ1(Ω)

φ1(Ω) φ0(Ω)
. . .

...
...

. . . . . . e−jΩφN−1(Ω)
φN−1(Ω) . . . φ1(Ω) φ0(Ω)

⎤
⎥⎥⎥⎦

One can prove that the eigenvalues λi(Ω) are all N -multiplexed and all pseudo-circulant 
matrices are diagonalized by the same unitary transformation

WN (Ω) := diag(ejΩk/N )k=0,...,N−1FN = DN (Ω)FN , (8)

where FN is the N × N unitary Fourier matrix. The eigenvalues can be expressed in 
term of the φk(Ω) as

λi(Ω) =
N−1∑
k=0

e−jΩk/Nφk(Ω)ω−ki
N ,

where ωN := ej2π/N .
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Moreover, any set {λ1(Ω), . . . , λN (Ω)} of analytic N -multiplexed functions is the set 
of eigenvalues for some pseudo-circulant matrix, i.e.

WN (Ω) diag(λk(Ω))k=1,...,NWN (Ω)H

is always pseudo-circulant. The functions φk(Ω) can be expressed in terms of the eigen-
values as

φk(Ω) = 1
N

ejΩk/N
N−1∑
i=0

λi(Ω)ωki
N .

An important technical result in [3] proves that the columns of WN (Ω) are N -
multiplexed, i.e.

WN (Ω + 2π) = WN (Ω)PN , (9)

where PN is the constant permutation matrix

⎡
⎢⎢⎣

1
1

. . .
1

⎤
⎥⎥⎦ . (10)

The proof of the main result showing the existence of the holomorphic pseudo-circulant 
block decomposition follows the same arguments of Theorem 3.14 in [3]. The main idea 
is to group the multiplexed singular values in the diagonal complex decomposition from 
Theorem 3 and apply the base change W(Ω) to make them block pseudo-circulant. 
Notice that this wasn’t possible to achieve in presence of signed multiplexed singular 
values. The unitary matrices undergo the same base change, but since they are also 
multiplexed thanks to Theorem 3, they also become 2π-periodic.

Theorem 4. For an analytic matrix A(z), there exists an analytic decomposition

A(z) = U(z)C(z)V(z)P

with para-unitary matrices U(z), V(z) and pseudo-circulant block-diagonal matrix C(z), 
where each block has size kν corresponding to a set of (signed) kν singular values.

Proof. Thanks to Theorem 3, there always exists an analytic decomposition

A(Ω) = Ũ(Ω)S(Ω)V(Ω)H ,

where for each kν-multiplexed non identically zero singular value si(Ω) in S(Ω), the 
associated left singular vectors Ũi(Ω) and the associated right singular vectors Vi(Ω)
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are all kν-multiplexed. More importantly, there are no singular values nor singular vectors 
that are signed multiplexed.

If q is the multiplicity of the singular value s1(Ω), then there are q identical copies of 
the first set of singular values, and q is also the number of columns in Vi(Ω) and Ũi(Ω) for 
i = 1, . . . , k1. When reordering the repeated singular values into forming the q identical 
multiplexed sets, we can always suppose that the t-th copy of the set corresponds to the 
singular vectors Vt,1(Ω) and Ũt,1(Ω) residing in the t-th columns of Vi(Ω) and Ũi(Ω).

More specifically, if vt
i(Ω) is the t-th column of Vi(Ω), then Vt,1(Ω) := [vt

1(Ω), . . . ,
vt
k1

(Ω)] and analogously with ũt
i(Ω), Ũi(Ω) and Ũt,1(Ω) = [ũt

1(Ω), . . . , ̃ut
k1

(Ω)]. The 
indexes t, 1 indicate that among the singular values in the first k1-multiplexed orbit of 
the permutation τ , we are investigating the t-th copy.

By hypothesis, the columns of Vt,1(Ω) and Ũt,1(Ω) are k1-multiplexed for any t, so 
Ũt,1(Ω + 2π) = Ũt,1(Ω)Pk1 and the same with Vt,1(Ω) where Pk1 is the permutation 
matrix in (10). Focusing on t = 1, and recalling that also Wk1(Ω) defined in (8) is 
k1-multiplexed, we have

Ũt,1(Ω)Wk1(Ω)H = Ũt,1(Ω)Pk1PH
k1

Wk1(Ω)H

= Ũt,1(Ω + 2π)Wk1(Ω + 2π)H ,

and the same applies with Vt,1(Ω) instead of Ũt,1(Ω). As a consequence, we can de-
fine the matrices Ut,1(Ω) := Ũt,1(Ω)Wk1(Ω)H and Vt,1(Ω) := Vt,1(Ω)Wk1(Ω)H that 
are both analytic and 2π periodic and with orthonormal columns. If now Δ1(z) :=
diag(si(Ω))i=1,...,k1 , then

Ũt,1(Ω)Δ1(Ω)Vt,1(Ω)H

= Ũt,1(Ω)Wk1(Ω)HWk1(Ω)Δ1(Ω)Wk1(Ω)HWk1(Ω)Vt,1(Ω)H

= Ut,1(Ω)C1(Ω)Vt,1(Ω)H ,

where C1(Ω) := Wk1(Ω)Δ1(Ω)Wk1(Ω)H is a 2π periodic analytic pseudo-circulant ma-
trix relative to the first set of singular values, since Δ1(Ω) has the diagonal elements 
that are k1-multiplexed. Repeating the same reasoning for all the copies of all the orbits 
of τ , we find a decomposition of the form

A(z) =
∑
t,i

Ut,i(z)Ci(z)VP
t,i(z) = U(z)C(z)VP (z)

with pseudo-circulant block-diagonal matrix C(z).

In a sense, the pseudo-circulant decomposition tells us that the only cause of non-
holomorphicity in the SVD is given separately by each multiplexed set of singular values, 
and they can be removed simultaneously from the singular vectors and the singular values 
by allowing a block diagonal middle matrix with specially structured blocks. Moreover, 
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the possibly signed singular values and vectors can be transformed nonetheless into a 
pseudo-circulant structure.

Example 6. Let A(z) be as in Example 5. We know that A(Ω) = U(Ω)S(Ω)V(Ω)H with

U(Ω) := −1
2

(
j(e−j2Ω + ejΩ/2) j(e−j2Ω − ejΩ/2)
e−j2Ω − ejΩ/2 e−j2Ω + ejΩ/2

)
,

S(Ω) :=
(

2 cos(Ω/4)ejΩ/4 0 0
0 −2j sin(Ω/4)ejΩ/4 0

)
,

V(Ω) := 1
2

⎛
⎝

√
2

√
2 0

e−jΩ/2 −e−jΩ/2 √
2

e−jΩ/2 −e−jΩ/2 −
√

2

⎞
⎠ ,

where all the si(Ω) and the columns U1(Ω), U2(Ω), V1(Ω), V2(Ω) are 2-multiplexed. 
Since the diagonal entries of S(Ω) are 2-multiplexed, the base change W2(Ω) in (8)
transforms it into

C(z) := W2(Ω)S(Ω)
(

W2(Ω)H
1

)
=

(
1 1 0
z 1 0

)
,

that is block pseudo-circulant with the only pseudo-circulant block relative to the func-
tions φ0(z) = 1, φ1(z) = z. As a consequence, one can find the holomorphic pseudo-
circulant decomposition as A(z) = U′(z)C(z)V′(z)H with

U′(z) := U(z)W2(z)P = 1√
2

(
−jz−2 −j
−z−2 1

)
,

V′(z) := V(z)
(

W2(z)P
1

)
= 1√

2

⎛
⎝
√

2
z−1 1
z−1 −1

⎞
⎠ . �

5. Conclusions

We have studied three different decompositions for possibly rectangular matrices A(z)
that are analytic at least on S1. From the known SVD that is analytic with respect to 
z1/L, but with possibly negative singular values, we have shown how to reduce the pa-
rameter L separately for every singular value, first by halving it by removing the sign 
change but relaxing the singular values in the complex plane, and then by transform-
ing the multiplexed singular subspaces into an holomorphic pseudo-circulant structure. 
This transformation shows that sign ambiguity plays no role in a possible decoupling 
of different multiplexed systems, no matter how they have been interlaced, akin to the 
eigenvalue decomposition of para-Hermitian matrices.

Future work will focus on the design of algorithms for the computation of such decom-
positions, in particular how to retrieve the pseudo-circulant factorization without having 
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to compute beforehand the singular values. Another feature to be yet studied is the sta-
bility of all these factorizations, whose analysis will be based on the preliminary results 
already shown in [3] about the stability of the eigenvalues of para-Hermitian matrices.
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